SCE903A3-002-01 伺服驱动伺服控制器 Pacific Scientific
SCE903A3-002-01 伺服驱动伺服控制器 Pacific Scientific
rence和适当的空气系数。因此
q CFM 1.08(t t)(3.7)h oa输入输出
式中:qh 供暖通风负荷,Btu/h
设计内部温度、加热
设计外部温度、加热
CFMoa 外部空气量,ft3/min
1.08 空气系数,Btu/h/[(ft3/min)F](对于标准空气必须
针对较高标高进行调整)
对于冷却,通风负荷为最小外部空气量
乘以设计焓差。因此
q CFM(h h)0.075 60(3.8)t oa o i
式中:qt 通风总冷负荷,Btu/h
设计外部条件下的焓,Btu/lb
设计内部条件下的高焓,Btu/lb
0.075 空气密度,lb/ft3(对于标准空气,必须调整
高海拔)
60分钟/小时
显冷负荷根据设计温度计算
差别因此
q CFM(t t)1.08(3.9)s oa o i
式中:qs 通风显冷,Btu/h
至外部设计温度,冷却
内部设计温度,冷却
如第4章所示,如果根据湿度图分析计算空气处理机组容量,则通风负荷将自动包括在内。
请注意,没有热损失的内部区域可以利用外部
如果空气处理系统如此设计,则为冬季冷却提供空气。这
将导致通风热负荷的一些降低。
设计程序:***部分
下载自数字工程图书馆@McGraw-Hill()
版权所有©2004麦格劳-希尔公司。版权所有。
任何使用均受网站上给出的使用条款的约束。
设计程序:***部分79
3.9其他荷载
还有一些其他因素有助于冷却和
热负荷。其中包括风扇和泵工作以及管道
以及管道损失。这些将在后续章节中讨论。
无论如何,热力学***定律占上风。能量是
既没有创造也没有毁灭。如果能源进出建筑物,必须对其进行核算和管理。
3.10摘要
本章讨论了冷负荷和热负荷,其中
强调手动程序和荷载要素。这个
该主题的主要信息来源是ASHRAE手册基础,感兴趣的读者可参考该手册
更详细的讨论。所有负荷计算,无论是手动或
计算机化,应仔细检查一致性和合理性。这就需要运用判断、常识,
和经验。
工具书类
1.ASHRAE手册,2001基础,第27章,“气候设计信息”
2.同上,第29章“非住宅空调、制冷和供暖负荷”
3.同上,第29章“非住宅空调、制冷和供暖负荷”
4.同上,第30章“开窗”
5.T.C.Min,“多层建筑中通过旋转门入口的冬季渗透”,《ASHRAE交易》,第64卷,1958年,第421页。
6.R.W.Haines,“选择空气处理机组的ΔT”,供暖/管道/空调,
1968年11月,第210页。
7.ASHRAE标准62-2001,可接受室内空气质量的通风。
设计程序:***部分
下载自数字工程图书馆@McGraw-Hill()
版权所有©2004麦格劳-希尔公司。版权所有。
任何使用均受网站上给出的使用条款的约束。
设计程序:***部分
下载自数字工程图书馆@McGraw-Hill()
版权所有©2004麦格劳-希尔公司。版权所有。
任何使用均受网站上给出的使用条款的约束。
设计程序:第2部分
设备选择的一般概念
4.1导言
本章旨在概述暖通空调系统中使用的标准
系统和设备选择过程,描述一些可用的系统和设备,并开发一些基础
与系统选择相关的哲学和背景。
中讨论了具体系统和设备项目的详细信息
后面几章。
4.2系统标准和
设备选择
问题解决过程需要一些可应用的标准
描述和评估备选方案。在暖通空调的选择中
在系统中,有意识地使用以下标准(表4.1)或
无意识地,因为
SCE903A3-002-01 伺服驱动伺服控制器 Pacific Scientific
SCE903A3-002-01 伺服驱动伺服控制器 Pacific Scientific
rence and the proper air factor. Thus,
q CFM 1.08 (t t ) (3.7) h oa i o
where qh ventilation load for heating, Btu/h
ti design inside temperature, heating
to design outside temperature, heating
CFMoa outside-air quantity, ft3 /min
1.08 air factor, Btu/h/[(ft3 /min) F] (for standard air—must
be adjusted for higher elevations)
For cooling, the ventilation load is the minimum outside air quantity
multiplied by the design enthalpy difference. Thus,
q CFM (h h ) 0.075 60 (3.8) t oa o i
where qt total cooling load for ventilation, Btu/h
ho enthalpy at design outside conditions, Btu/ lb
hi enthalpy at design inside conditions, Btu/ lb
0.075 air density, lb/ ft3 (for standard air—must be adjusted for
higher elevations)
60 min/h
The sensible cooling load is calculated from the design temperature
difference. Thus,
q CFM (t t ) 1.08 (3.9) s oa o i
where qs sensible cooling for ventilation, Btu/h
to outside design temperature, cooling
ti inside design temperature, cooling
If the AHU capacity is calculated from a psychrometric chart analysis, as shown in Chap. 4, the ventilation load is automatically included.
Notice that interior zones, with no heat loss, can make use of outside
air for winter cooling if the air-handling system is so designed. This
will result in some reduction of the ventilating heating load.
Design Procedures: Part 1
Downloaded from Digital Engineering Library @ McGraw-Hill ()
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.
Design Procedures: Part 1 79
3.9 Other Loads
There are some additional factors which contribute to the cooling and
heating loads. Among these are fan and pump work as well as duct
and piping losses. These are discussed in subsequent chapters.
In any case, the first law of thermodynamics prevails. Energy is
neither created or destroyed. If energy moves into or out of the building, it must be accounted for and managed.
3.10 Summary
In this chapter, cooling and heating loads have been discussed, with
emphasis on manual procedures and the elements of the loads. The
principal source of information on this subject is the ASHRAE Handbook Fundamentals, to which the interested reader is referred for a
more detailed discussion. All load calculations, whether manual or
computerized, should be carefully checked for consistency and reasonableness. This requires the application of judgment, common sense,
and experience.
References
1. ASHRAE Handbook, 2001 Fundamentals, Chap. 27, ‘‘Climatic Design Information.’’
2. Ibid., Chap. 29 ‘‘Non Residential Air Conditioning, Cooling, and Heating Load.’’
3. Ibid., Chap. 29 ‘‘Non Residential Air Conditioning, Cooling, and Heating Load.’’
4. Ibid., Chap. 30 ‘‘Fenestration.’’
5. T. C. Min, ‘‘Winter Infiltration through Swinging Door Entrances in Multistory Buildings,’’ ASHRAE Transactions, vol. 64, 1958, p. 421.
6. R. W. Haines, ‘‘Selecting a Delta T for an AHU,’’ Heating /Piping / Air Conditioning,
Nov. 1968, p. 210.
7. ASHRAE Standard 62-2001, Ventilation for Acceptable Indoor Air Quality.
Design Procedures: Part 1
Downloaded from Digital Engineering Library @ McGraw-Hill ()
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.
Design Procedures: Part 1
Downloaded from Digital Engineering Library @ McGraw-Hill ()
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.
81
Chapter
4
Design Procedures: Part 2
General Concepts for Equipment Selection
4.1 Introduction
The purpose of this chapter is to outline the criteria used in the HVAC
system and equipment selection process, to describe some of the systems and equipment available, and to develop some of the underlying
philosophy and background related to system selection.
Details of specific systems and items of equipment are discussed in
later chapters.
4.2 Criteria for System and
Equipment Selection
The problem-solving process requires some criteria that can be applied
in describing and evaluating alternatives. In the selection of HVAC
systems, the following criteria (Table 4.1) are used—consciously or
unconsciously—because on
SCE903A3-002-01 伺服驱动伺服控制器 Pacific Scientific