表面生成的目的是为了构造物体的可视等值面,常用体素级方法直接处理原始灰度体数据。Lorensen提出了***体素级重建算法:MC(Marching Cube,移动立方体)法。移动立方体法首先将数据场中八个位置相邻的数据分别存放在一个四面体体元的八个顶点处。对于一个边界体素上一条棱边的两个端点而言,当其值一个大于给定的常数T,另一个小于T时,则这条棱边上一定有等值面的一个顶点。然后计算该体元中十二条棱和等值面的交点,并构造体元中的三角面片,所有的三角面片把体元分成了等值面内与等值面外两块区域。连接此数据场中的所有体元的三角面片,构成等值面。合并所有立方体的等值面便可生成完整的三维表面。
说三维重建首先要从计算机视觉讲起。计算机视觉包含两个基本方向,物体识别和三维重建。图像识别的突破性进展源自于2012年卷积神经网络(CNN)的兴起。在此之前,三维重建技术,计算机视觉的核1心研究方向是三维重建。因为在当时,对于图像的特征提取主要是通过三维重建的方法来定义和实现的。自2012年以来,图像的特征便逐渐由神经网络来自动学习。
三维重建的应用是很广泛的,对于自动驾驶、VR、AR等应用领域应用来讲,三维重建是核1心技术,并且实时三维重建是必然趋势,因为我们生活在三维空间里,必须将虚拟世界恢复到三维,我们才可以和环境进行交互。
全局配准是使用整幅图像直接计算转换矩阵。通过对两帧精细配准结果,按照一定的顺序或一次性的进行多帧图像的配准。这两种配准方式分别称为序列配准(Sequential Registration)和同步配准(Simultaneous Registration)。
配准过程中,匹配误差被均匀的分散到各个视角的多帧图像中,达到削减多次迭代引起的累积误差的效果。值得注意的是,虽然全局配准可以减小误差,但是其消耗了较大的内存存储空间,大幅度提升了算法的时间复杂度。