高分辨率磁光克尔显微镜
当一束线偏振光照被磁性介质反射后,反射光的偏振面相对于入射光的偏振面有一个小的角度偏转(克尔旋转角),这一现象被称为磁光克尔效应。该效应与显微成像技术结合组成磁光克尔显微镜,被广泛应用于磁性材料磁性测量,磁畴观察等。 由于该设备可进行无损探测、灵敏度高、在***环境下原位测量等优点是被越来越多的科研人员采用。高分辨率磁光克尔显微镜
为满足日益增长的市场需求昊量光电推出了高性价比的磁光克尔显微镜。其主要原理是:一束面光源经过起偏器,转变为线偏振光,照射到样品上,由于样品内磁畴的存在使样品各个区域内磁化强度和方向不同,因此不同区域对线偏振光,偏振面的改变各不相同。因此当反射光通过检偏器后光斑的强度分布不同,从而得到样品的磁畴结构。
为了获得更高的灵敏度,优异的磁畴成像效果等该系统做了以下优化。高分辨率磁光克尔显微镜
1)采用高亮度窄带LED光源。
尽管理论上磁光克尔效应的对比度可以***高,但是多个波长偏振像差的组合通常会大大降低偏振的纯度。因此传统的克尔显微镜经常报道磁光克尔对比度几乎观察不到。一个主要的原因就是因为使用宽谱的照明光源。因为磁光效应引起的克尔旋转量与光源波长数量成反比,宽谱光源会产生相同宽谱的线偏振,也就是说,光偏振不是***的线性,观察到的磁对比度也会降低。
因此为了克服由于光源带来的相差,我们经过多组测试,选取了FWHM为50nm的超亮LED光源,可获得很强的对比度,并且拥有较高的使用寿命。
2)图像自动校正功能
通常为了获得较弱磁性材料的对比度,市面上磁畴观察设备通常会采用图像差分处理来获得较高对比度,即使用拍摄到的图像减去背底图片。该方法通常可以将信号增强10倍以上。但是由于在施加磁场的过程中样品的位置会发生偏移,会大大影响差分处理效果,甚至出现错误。为了消除样品的移动,设备会通过快速像素相位算法确定样品漂移,然后通过压电促动器实时校正位置。同时该帧位移的图像在软件中也会实时修正,校正后的图像位移量不大于0.2个像素(8nm)
3)特殊设计的电磁铁
通常磁畴观察显微镜中的电磁铁设计是一个具有挑战性的话题,必须要有一些取舍。为了获得较高的分辨率,因此要使用大倍率的物镜,放置在靠近样品的位置。这对电磁铁强加以一个空间限制,并限制了生产磁场的强度。其次,磁铁产生的磁通量会通过物镜,引起法拉第效应,从而降低成像对比度。
我们通过革新的磁通量闭合式设计从而巧妙的解决了这两个问题。通过对电磁铁的磁场测量,我们可以发现,磁铁的磁场提高了4倍,但是通过物镜的磁场强度却降低了8倍。产生磁场的均匀性在4mm范围内也达到了0.5%的水平。
4)高灵敏度,高分辨率成像相机
对于磁光克尔显微镜,样品反射的光通过检偏器,仅仅只有***之一的入射光达到相机传感器。因此对于磁畴成像系统,相机的灵敏度就体现的尤为重要。因此为了达到成像效果,我们选取了再该波段下量子效***达78%,并且具有20兆像素的背照式相机。从而获得高分辨率,高信噪比的图像。
此外该设备不但可以获得样品磁畴图片,还可以根据样品磁畴图像同时获得样品的磁滞回线分析。
高分辨率磁光克尔显微镜产品参数:
Light source | 2200 Lumens ultrabright LED lamp |
Camera | 6.4 Megapixel @ 60FPS >78% Quantum efficiency |
Resolution | 300nm |
Magnetic Field | 1T(Perpendicular)/0.5T(Longitudina) |
Power Requirement | 230VAC ± 10%, 13Amp Single Phase |
Size / Weight | Main System: 60 x 50 x 1500px, 25kg Power Supply Tower: 60 x 60 x 750px, 10kg |
实例:
1)1nm CoFeB磁性薄膜
2)4种灰度:垂直磁化磁隧道结多级磁畴(4 shades of grey: Multilevel stripe domains on a perpendicularly magnetized magnetic tunnel junction stack)
3)[Pt/Co/Fe/Ir]x2 堆栈手性磁畴(Chiral stripes (and skyrmions)on a [Pt/Co/Fe/Ir]x2 stack)
4)Heusler 合金薄膜中的垂直磁化的磁畴反转(Domain reversal in a perpendicularly magnetized Heusler alloy thin film)
5)同时施加磁场和电流
6)电流诱导的磁畴远动的准实时观测
7)CoFeB多层材料退磁过程的实时观测