S71262-NANANA 模块用于控制传输速度 Kollmorgen
S71262-NANANA 模块用于控制传输速度 Kollmorgen
如果ROL功能正常,则室内环境将略有变化。然而,内部和外部
负载不断变化。冷负荷系数的函数
计算中的(CLF)是近似这些瞬态的影响
使静荷载计算产生更类似结果的因素
“真实”动态负载。
导致这些因素的研究源于广泛的
公认的条件是,旧的计算方法总是导致
暖通空调系统和设备尺寸过大。能量的增加
在20世纪70年代,设备成本导致广泛接受
新方法,因为一般来说,如果设备尺寸过大,总体运行效率会降低。即使如此,表中的因素
保守,通常会导致一些尺寸过大。
3.8通风负荷
渗透已经讨论过了。然而,大多数建筑规范
公共建筑需要强制通风,采用固定通风
与占用率相关的费率。而较旧的代码使用5到
每人10立方英尺/分钟,当前要求使用两到三次
这个数量。大多数地方建筑规范使用全部或部分ASHRAE
以标准62为基础。本标准不断修改,当前版本日期为2001年。某些规范可能允许:
根据室内空气质量测量自动调整外部空气量。测量值可包括CO2和/或
挥发性有机碳(VOC)。
此外,许多工艺需要大量排气,以
需要该补充空气。用于通风和补给的外部空气
必须通过空气处理装置引入,在空气处理装置中进行过滤和回火(达到加热或冷却的设计条件设计程序:***部分
下载自数字工程图书馆@McGraw-Hill()
版权所有©2004麦格劳-希尔公司。版权所有。
任何使用均受网站上给出的使用条款的约束。
78第三章
ing)。由于知道以下情况,整个问题变得更加复杂:
在许多室内环境中,室外空气质量可能不可接受,因此可能需要进行特殊处理以去除污染物(见第5章和第21章)。
因此,虽然通风负荷不是空间负荷的一部分,但它是
反映在空气处理装置和中央设备容量中。对于加热,它是最小外部空气量乘以设计
温差和适当的空气系数。因此
q CFM 1.08(t t)(3.7)h oa输入输出
式中:qh 供暖通风负荷,Btu/h
设计内部温度、加热
设计外部温度、加热
CFMoa 外部空气量,ft3/min
1.08 空气系数,Btu/h/[(ft3/min)F](对于标准空气必须
针对较高标高进行调整)
对于冷却,通风负荷为最小外部空气量
乘以设计焓差。因此
q CFM(h h)0.075 60(3.8)t oa o i
式中:qt 总冷却
S71262-NANANA 模块用于控制传输速度 Kollmorgen
S71262-NANANA 模块用于控制传输速度 Kollmorgen
rols are functioning properly, then the indoor environment will vary only slightly. However, the internal and external
loads are constantly changing. The function of the cooling load factor
(CLF) in the calculation is to approximate the effect of these transient
factors so that the static load calculation will yield results more like
the ‘‘real’’ dynamic load.
The research which led to these factors resulted from the widely
recognized condition that older calculation methods invariably led to
oversizing of HVAC systems and equipment. The increases in energy
and equipment costs during the 1970s led to a broad acceptance of the
new methods because, in general, overall operating efficiency decreases if equipment is oversized. Even so, the factors in the tables
are conservative, and some oversizing will normally result.
3.8 Ventilation Loads
Infiltration has already been discussed. However, most building codes
require positive ventilation in public buildings, with a fixed ventilation
rate which relates to occupancy. While older codes used rates of 5 to
10 ft3 /min per person, current requirements use two or three times
that amount. Most local building codes use all or part of ASHRAE
Standard 62 as a basis. This Standard undergoes continuous modification—the current issue is dated 2001. Some codes may allow for
automatic adjustment of outside air quantities, based on measurement of indoor air quality. Measured values may include CO2 and/ or
volatile organic carbons (VOC) as appropriate.
In addition, many processes require large amounts of exhaust, for
which makeup air is required. Outside air for ventilation and makeup
must be introduced through an air-handling unit, where it can be filtered and tempered (brought to design condition for heating or coolDesign Procedures: Part 1
Downloaded from Digital Engineering Library @ McGraw-Hill ()
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.
78 Chapter Three
ing). This whole matter is further complicated by the knowledge that
outdoor air quality may not be acceptable in many indoor environments, so that special treatment to remove contaminants may be necessary (see Chaps. 5 and 21).
Thus, while the ventilation load is not a part of the space load, it is
reflected in the air-handling unit and central plant capacity. For heating, it is the minimum outside air quantity multiplied by the design
temperature difference and the proper air factor. Thus,
q CFM 1.08 (t t ) (3.7) h oa i o
where qh ventilation load for heating, Btu/h
ti design inside temperature, heating
to design outside temperature, heating
CFMoa outside-air quantity, ft3 /min
1.08 air factor, Btu/h/[(ft3 /min) F] (for standard air—must
be adjusted for higher elevations)
For cooling, the ventilation load is the minimum outside air quantity
multiplied by the design enthalpy difference. Thus,
q CFM (h h ) 0.075 60 (3.8) t oa o i
where qt total cool